# **University of Applied Sciences Hamburg**

## HAW Hamburg

Passive dosing of polycyclic aromatic hydrocarbons in the marine algae test using silicone O- rings

Gesine Witt<sup>1</sup>, Nora Claire Niehus<sup>1</sup>, Philipp Mayer<sup>2</sup>, Carolin Floeter<sup>1</sup>

<sup>1</sup>University of Applied Sciences Hamburg, Department Environmental Engineering, Germany <sup>2</sup>Technical University of Denmark, Kongens Lyngby, Denmark email: gesine.witt@haw-hamburg.de



#### Introduction

Testing hydrophobic organic compounds (HOCs) in aquatic toxicity tests is difficult due to compound losses through volatilization, sorption to the test vessel and culture medium constituents. This results in poorly defined exposure, the bioavailable concentration is reduced and concentration-effect-relation might be underestimated.

#### **Passive dosing principle**



#### **Advantages Passive Dosing** (1) Control of C<sub>Free</sub> and not C<sub>total</sub> (2) Constant $C_{\text{free}}$ during the whole test (72h) (3) No solvents or cosolvens

Passive dosing can overcome these problems by the continual partitioning of HOCs from a dominating reservoir loaded in a biologically inert polymer such as silicone (1-4). This procedure provides defined and constant freely dissolved concentrations and eliminates spiking with cosolvents.

Passive Dosing Material: silicone (PDMS) (1) Chemically inert and biocompatible (2) High PAH capacity (no depletion) (3) Linear PAH partitioning over full concentration test range

| Material & Methods                |                     | Passive dosing                                                                                                                                                                                                                                                                                                  | Standard dosing                                                                                                                                                              |
|-----------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <section-header></section-header> | Method              | <ol> <li>Pre-cleaning the O-rings</li> <li>Loading silicone with PAHs to<br/>required level from methanol<br/>solution (saturation and serial<br/>dilutions)</li> <li>Cleaning of the O-rings with a<br/>small volume of water</li> <li>Equilibration of the loaded O-<br/>ring with the test medium</li> </ol> | <ul> <li>(1) Direct Serial dilution<br/>of selected PAHs in<br/>ASW water</li> <li>(2) Dilution from ASW<br/>solubility and<br/>dilution series (1:1<br/>to 1:32)</li> </ul> |
|                                   | Exposure<br>control | Controlled by equilibrium<br>partitioning between loaded<br>PDMS and test medium                                                                                                                                                                                                                                | not possible                                                                                                                                                                 |
|                                   | Exposure confirmat  | analysis of PAHs in silicone                                                                                                                                                                                                                                                                                    | not possible                                                                                                                                                                 |

ion

#### Marine algae test with *Phaeodactylum tricornutum*

Criteria for the selection of the marine algae toxicity test

- Marine toxicity data are underrepresented
- International standardized test procedure (ISO EN DIN 10253, 2006)
- Important parameter (reproduction growth rate (E<sub>r</sub>C<sub>50</sub>) in 72 h
- Marine diatom Phaeodactylum tricornutum shows three morphological forms pelagic and benthic - of highly interest with respect to the bioavailability of HOCs
- All tests were conducted in 24 micro well plate
- artificial seawater (ASW) was used
- All validity criteria were fulfilled
- EC<sub>50</sub>-values were calculated with GraphPad Prism 6.0







#### Discussion

- (1) Comparison of the  $E_rC_{50}$  values passive dosing vs. standard dosing:  $\rightarrow$  underestimation of the effects or no effects when using nominal standard dosing
  - $\rightarrow$  probably reasons: sorptive losses and limiting dissolution kinetics

(2) Passive dosing concentration-response curves were more reproducible

```
(3) Curves shifted towards lower concentrations by several orders of
   magnitude
```

(4) One activity-response model could be fitted to all data, which yielded an effective chemical activity (Ea<sub>50</sub>) of 0.14, which is slightly higher compared to recently published studies with *Daphnia magna* (Ea<sub>50</sub>=0.036) and *Danio rerio* embryos  $(Ea_{50}=0.059-0.089)$ 

### Conclusions

(1) Response is clearly not only dependent on the potency of the compounds, but also on its supply, sorption and consumption during the assay.

(2) Passive dosing is a practical and economical way of improving the exposure of HOCs in

- $\rightarrow$  aquatic toxicity tests
- $\rightarrow$  bioconcentration tests

(1) Mayer P, Nyholm N, Verbruggen EMJ, Hermens JLM and Tolls J (2000) Envir. Tox. and Chem. 19:2551-2556

(2) Smith K.E.C., Oostingh G.J., Mayer P. (2010) Chem. Res. Toxicol. 23:55-65

(3) Rojo-Nieto E, Smith KEC, Perales-Vargas-Machuca JA and P Mayer (2012) Aquatic Toxic. 120-121:27-34 (4) Seiler TB, Best N, Fernqvist MM, Hercht H, Smith KEC, Braunbeck T, Mayer P and H Hollert (2014) Chemorsphere 112:77-84



We thank the students of the practical course for Environmental Analysis for their support.



Federal Ministry

of Education

and Research

緣